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Tracking performance depends upon the quality of the measurement data.
In the Kalman-Bucy filter and other trackers, this denendence is well-
understood in terms of the measurement noise covariance matrix, which
specifies the uncertainty in the values of the measurement inputs. When
the origin of the measurements is also uncertain, one has the widely-
studied problem of data association (or data correlation), and tracking
performance depends critically on additional parameters, primarily the
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probabilities of detection and false alarm. In this paper we derive
a modified Riccati ecuation that quantifies (approximately) the
dependence of the state error covariance on these parameters. We
also show how to use an ROC curve in conjunction with the above
relationship to determine an "optimal" detection threshold in the signal
processing system that provides measurements to the tracker.
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1. INTRODUCTION

Garden-variety tracking problems involve processing

measurements (e.g., range and azimuth observed by a sensor) from

a target of interest and producing, at each time step, an

estimate of the target's current position and velocity vectors.
Uncertainties in the target motion and in the measured values,
usually characterized as random noise, lead to corresponding
uncertainties in the target state.

A common and versatile approach to such problems involves
assuming that the state dynamics and the measurements are both

corrupted by additive, white, possibly Gaussian noise; the

solution is then the celebrated Kalman-Bucy filter

[1, 2, 3, 4, 5], which is the conditional mean state estimator,

best linear estimator, maximum a posteriori estimator, maximum

likelihood estimator, or least-squares estimator, 1 depending upon
one's point of view. The parameters that determine tracking
performance in such a filter are the system matrices in the

equations describing target state dynamics and measurements,
which will be considered fixed for the purposes of this

discussion, and the covariance matrices of the process and
measurement noise, which specify the uncertainties in target

motion and measured values, respectively.

In many tracking problems, particularly those arising in

surveillance, there is additional uncertainty regarding the
origin of the received data, which may (or may not) include

1In the least-squares case, the assumptions about noise are
replaced by assumptions about error weightings.
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measurements from the target(s) of interest, interfering targets,

or random clutter (false alarms). This leads to the problem of

data association or data correlation, which has been attacked on

a number of fronts [6, 7, 8, 9, 10, 11, 12, 13, 14] and surveyed

in [15, 16, 17]. In this situation, tracking performance depends

not only upon the noise covariances, but upon the amount of

uncertainty in measurement origin. In some of the approaches

cited above [6, 7, 8, 9, 101, this dependence is explicit and is

characterized in terms of the detection probability and clutter

density (which is proportional to false alarm probability).

In typical applications, measurement data are provided to a

tracker by upstream signal processing and detection algorithms,

as indicated in Figure 1. The process noise covariances are

normally selected on the basis of experience and intuition (i.e.,

they are guessed). The measurement noise covariances are either

provided by the signal processing algorithm, as shown in the

figure, or they are selected in the same manner as the process

noise. In any case, the true noise levels are usually fixed by

target dynamics and sensor configuration and cannot be adjusted

on line.

Detection and false alarm probabilities, on the other hand,

are highly interdependent and adjustable via a detection

threshold: raising the threshold lowers both probabilities, and

vice-versa. This relationship, which is also parameterized by

signal-to-noise ratio (SNR), is usually characterized by means of

a set of receiver operating characteristic (ROC) curves, as

discussed below in Section 4. The threshold is typically set by

choosing a design point on the most applicable ROC curve, based

on the perceived tradeoffs between false alarms and missed

detections. However, to the best of our knowledge, these

tradeoffs have never included any systematic or quantitative

2
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consideration of the effects downstream on data association and

tracking performance.

In this paper we shall derive such a quanf itative

relationship, in which the dependence of a tracker's error

covariance upon detection and false alarm probability is

explicitly (but approximately) characterized by a scalar

parameter in the covariance equation (modified Riccati equation).
This result is important for the following reasons:

1. Contour plots of the scalar parameter as a function of
detection probability and false alarm probability form
a set of "tracker operating characteristic" (TOC)
curves,.which can be superimposed on ROC curves for the
detector or receiver of interest in order to determine
graphically the operating point that "optimizes"
tracker performance.

2. The stability of the tracking process depends

3



critically on the detection and false alarm
probabilities; whether the modified Riccati equation
remains stable for all values of the scalar parameter
remains an open question.

3. Allocation of tracking resources (both computation and
communication) requires prediction of future state
error covariances under various resource
configurations, i.e., as a function of detection and
false alarm probability and of process and measurement
noise covariance.

4. The same derivations provide a solution to the related
problem of determining the statistical properties of
the modified likelihood function [18], used for
decision making (e.g. maneuver detection) when
measurement origins are uncertain.

In Section 2 the problem of relating tracking performance to

detection and false alarm probabilities is formulated in the

context of probabilistic data association. The key results are

derived in the next section, followed by analyses and ROC curves
of simple receivers in Section 4. These results are combined in

Section 5 and used to select optimal operating points on the ROC

curves. Application to the modified likelihood function is
discussed in the next section, followed by concluding remarks in

Section 7.
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2. PROBLEM FORMULATION

Consider a dynamic system (target model) of the usual form,

Xk+ 1  fxk + Gwk (1)

Yk =-X Vk (2)

where x is the state vector, y is the measurement vector, w and v

are zero-mean, mutually independent, white, gaussian noise

vectors with covarian.if: matrices Q and R, respectively, and k is

a discrete time index. The matrices F, G, H, 0, and R are

assumed known and their dependence on t is suppressed here for

notational convenience. The initial state is assumed gaussian

with mean Roo and covariance Polo. A typical state vector would

include position and velocity variables, as well as other

information that relates to the specific type of platform being

tracked, and typical dynamics would assume straight-line or

great-circle target motion with disturbances from the process

noise w.

The tracker's estimate of the target state xk at time k,

given data up to time i, is denoted StkI . The error in thisk

estimate is ]Kkli = k-_28li, with error covariance matrix _kli =

EjqkliR'li}, where E denotes expectation. The discrete-time

Kalman-Bucy filter [2, 3, 4, 5] propagates these in two stages.

The prediction stage accounts for time evolution,

=Ikl -- -k-llk-(

!Pk-l = 2-k-llk-lf- + GQG" (4)
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starting from the initial conditions Rojo and Polo. The update

stage compares the incoming measurement Yk with the predicted

measurement Lk = HRklk-l to form the innovation vector

k -k ik-1 (5)

whose covariance matrix is

s k  = -- RkIk-l .+ R (6)

The state and covariance are then updated via

k k = k-l + Wkyk (7)

pkl k = (I-WkH) Pklk-l(I-WkH) + WkRW-

- k Ik-l - -kS-kW (8)

where Wk E Pk-liH'Slis the gain matrix. The resulting state

estimate, under the above assumptions, is the conditional mean

aklk = E{XklYk} where yk denotes all data vectors Yi for i < k.

In order to avoid clouding the discussion to follow, this

brief summary ignores a number of complications that arise in

practice. If the system is nonlinear, for example, then it can

usually be linearized and the same basic equations can be applied

to deviations from the nominal trajectory [3, 5). If the target

occasionally deviates from the assumed motion model, e.g., by

maneuvering, then some decision-making or other machinery must be

provided to deal with these instances.

In multi-sensor problems, the size and composition of the

6



measurement vector often varies from one time to the next; in

other words, Y4 is composed of independent subvectors from

various sensors, any subset of which may be present at a given

time. Moreover, in the problem of interest here, each sensor

supplies not one but several subvectors that must be associated

with targets. We will avoid the resulting notational morass by

restricting equations (5)-(8) to apply to a measurement subvector

Yk from a single sensor. In addition, we will suppress the time
* subscript k from all variables except P and Y, unless it is

required for clarity. Without any loss of generality, the data

association problem may now be formulated as follows.

At each time step, the sensor provides a set of candidate

measurements to be associated with targets (or rejected). In

most approaches, this is done by forming a "validation gate"4

around the predicted measurement from each target and selecting
* those detections that lie within the gate. There are many

different approaches to establishing a correspondence between
candidate measurements and targets; some of these were cited

above in Section 1.

In this paper we shall focus on the probabilistic data

association (PDA) method (6, 7, 15], although the results are
relevant to other methods (9, 101 in which similar machinery is

used. The m candidate measurements are denoted yj, j=l,...m, and

their corresponding innovations are

Lj = Yj - j=l,...m (9)

The term measurement will be used interchangeably for yj and

since they contain equivalent information [5].

Considering a single target independently of any others, Xj

7



denotes the event that the j-th measurement belongs to that

target and X0 the event that none of the measurements belongs to

it (no detection). The PDA approach builds upon the assumptions

that the estimation errors it and 2 have gaussian densities at

each time step (this is approximate, since there is an

exponentially growing tree of possible measurement sequence
hypotheses and the true densities are weighted sums of

gaussians). It is also assumed that the correct measurement is

detected with probability PD (independently at each time) and

* that all other measurements are Poisson-distributed2  with

parameter CV, where C is the expected number of false
measurements per unit volume and V is the volume of the

validation gate.

* The gate is normally a g-sigma ellipsoid 12 : S-1 g2} and

PG is the probability that the correct measurement, if detected,

lies within the gate. 3 The gate volume is thus V cMgMIi I/ 2

where M is the dimension of Z and cM=1M/2/F(M/2+l) is the volume

of the M-dimensional unit sphere (cl=2, c2="r, c3=4T/3, etc.).

The conditional mean estimate A is obtained from (7) by

using the combined (weighted) innovation

2 Sjj (10)

2Equivalently, the number n of false measurements has
probability mass function p(n) = e CV(CV)n/n! and the location of
each false measurement is uniformly distributed in the gate.

3This is just the gaussian probability mass in the gate, which
is en assumed to be unity in practice, since PG>.99 whenever

+2.



where Bi pjXjIYk}, j=O,1,....m, is the posterior probability
that the j-th measurement (or no measurement, for j-0) is the
correct one. These probabilities are given by the following
expressions (see Appendix A):

= , j=l....m (11)

b + exp(-jjS'2i/2)

b
=0 (12)

b + 24exp(-2,S-lyi/2)

where

b (2T)M/2CISjl/2 (1~p DPG)/pD

=(2r)M/
2(CV/c MgM)1- P (13)

The covariance update equation (8) becomes

!Rklk = kjk-l - (l-aO)WSW' + Rk(14)

where

M (15)

The data-dependent factors a% and Pk transform the original
deterministic Riccati equation into a stochastic one.

9



The principal purpose of this paper is to explore the
dependence of tracking performance, particularly the behavior of

Ekl k , on detection probability PD and clutter density C. This is
accomplished in the next section by means of a deterministic

approximation to the stochastic modified Riccati equation (14).

Another major problem in data association and tracking is

the testing of hypotheses for maneuver detection, track

initiation, signature formation, target classification, and other

decision-making purposes. The uncertainty in measurement origin

*leads, in the PDA and other approaches, to a modified likelihood

function (18] involving the combined innovation in (10). A
major drawback of this approach was the difficulty of computing

the covariance matrix of 2, but this can now be done using an
intermediate result to be derived in the next section. Its"

application to the modified likelihood function will be discussed
in Section 6.

Finally, note that multiple targets can be handled

simultaneously via the joint probabilistic data association
(JPDA) approach [81, in which the posterior probabilities

(1l)-(12) are computed jointly across a set of potentially
interfering targets. Although this is a very important

extension, it greatly complicates the derivations and will not be

included here.

10



3. APPROXIMATE COVARIANCE EQUATION

Since any measure of tracking performance must depend
heavily (or perhaps exclusively) on the error covariance matrix
.k k' we shall attempt to characterize its behavior in the

presence of uncertainties in measurement origin. PkIk is a

random (data-dependent) matrix governed by the nonlinear,
stochastic difference equations (4) and (14) , and hence its

behavior can only be determined in a statistical sense.

Moreover, even propagation of its first and second moments
appears to be intractable except via extensive numerical

operations.

Consequently, we shall consider an approximation to (14) in
which the random matrix ?k defined in (15) and the probability 60

given by (12) are replaced by their (prior) expected values

k - E{f IYk - l )  (16)

70 - E{ 0IYk-l} = E{B0} - 1 - PQDG (17)

where the final expression is a consequence of E[P{AIB}1-P{A}.

These substitutions make (4) and (14) into a set of
deterministic equations that can be iterated forward in time.
Because (14) is nonlinear in Pklk-l, this does not yield E{fPklk1
nevertheless, it will give approximate values of future state
error covariances in the presence of uncertain detections and
false alarms as a function of the environmental parameters PD and

C, and of the noise covariances R and Q.

Expansion of (16) yields

11



Pk- Elyk- EIEIp k I,ykl)11yk-1 1

C-O

where P~mlYkl}I , p~m} is given by (37) in Appendix A. Using

(15) and (10), the inside expectation becomes

W(Ul(m)-U 2(m) 1W', l,..

-[k~mYl (19)

* 0, ,u-0

where

* E( ~j~~j~mYklJ(20)

and4

R2m E[l 8i j 5j2- Im,ykl],

I E1- aZi 1 m, k (21)

The expected values are obtained by multiplying the quantities in

square brackets by the joint prior density p( 2 1 ... ImYl
given in (42) and integrating over the validation 

gate. mk-

4 The second expression in (21) is obtained as a intermediate
result in Appendix B.
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Considerable simplifications result if one applies a linear

transformation of variables (S- 1/ 2 ) to obtain a spherical gate,

followed by a change to spherical coordinates. Because of the

spherical symmetry of the gaussian density and of the expressions

(20)-(21), off-diagonal elements, cross-terms, and angular

variables drop out like flies, leaving scalar integrals over the

radial variables (i.e., over I IjI, j=l,...m). The detailed

derivation, which is given in Appendix B, leads to

UP(m) M m D _ (22)CM
-~l (m) PDPGm + (I-PDPG)CV ( 2 7r)M/2 (22)D CM

_22(m) _ _ _/2I (m)S (23)
PDPGm + (l-PDPG)CV (2 7)M/2g2 -

where the scalar integrals I, and 12 (m) are defined as

g

I- f rM+lexp(-r2/2)dr (24)

0
2 2

12(m) -4 f ... (rlr2 . ..r ) ,... dr m

0 0 b + 3-Aexp(-rj2/2) (25)

and the constant b is defined in (13).

Substituting (22)-(25) and (37) into (18) and cancelling
leads to

-k (ql-q2)WSW' (26)

13



where

cM 0 e-CV(CV)m-1 CM (27)
q1  D (2.)l-M/2 E- (m-i) ! (2) M / 2

q 2 DCM O e-CV (CV)m-l M2m-l
q2 (2 PD M/2 (iI 2(m) (28)~~~(27), (m !mM

and substitution of this and (17) into (14) yields

Pkik - Pklk-l - (PDPG-ql+q2 ) (WSW') (29)

This can be simplified further by noting that for typical

values of g and M (g=4 or 5 and M<10), PG is approximately 1 and

ql is approximately PD (substitute xI/ 2 for r in I, to get a

gamma function).

The upshot of all this is that the deterministic

approximation to the covariance equation becomes

kIk - kIk-1 - q2 (WS 
w ' ) (30)

where the scalar parameter q2, defined in (28), depends on PD and

C and lies between 0 and 1. Comparing this to (8), it is clear

that the factor q2 reduces the covariance improvement due to the

term WSW*: the smaller q2 is, the greater the degradation.

Thus, q2 provides a useful measure of tracking performance as a

function of PD and C.

14



Evaluation of q2

A Monte Carlo integration program has been used to integrate

(25) and compute q2 for various values of PD and C. Evaluating

the integrand in (25) at 5000 random points and truncating the

sum in (28) at 10 terms yields a table of q2 values with error

standard deviations of 0.5-1.5% for M=l and 2, and 1-5% for M=3.

It is useful to display these numbers via contour plots of

q2, as shown in Figures 2-4 (the curves become smoother if more

points are used in the Monte Carlo integration). The vertical

axis is PD and the horizontal axis is CV, the expected number of

false measurements in the gate (proportional to false alarm

probability). A 4-sigma gate (g=4) was used and the three plots

correspond to measurement vectors y with dimensions M = 1, 2, and

3, respectively. We shall refer to these as tracker operating

characteristic (TOC) curves, by analogy with the receiver

operating characteristic (ROC) curves to be given in Section 4

below.

Note that V = c gMiSl/ 2 and S = HPk kIH'+ R, so that the

gate volume in fact depends upon the state error covariance matrix

[kjk-l. It follows that the above analysis is fully valid only

in steady state ([klkl constant). We are currently working on

extending this procedure by iterating equations (4), (30), and

(28) to obtain P(PDC), the steady-state error covariance matrix.

A slightly modified set of TOC curves can then be formed with

I1lI/2 (or some other appropriate metric) plotted as a function

of PD and C. In the process of obtaining the table of _(PDC),

we also expect to determine empirically those values of PD and

C for which the covariance equations become unstable.

15
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4. ANALYSIS OF DETECTION ALGORITHMS

The tracking inputs shown in Figure 1 can come from a

variety of sources, ranging from simple threshold detectors to

complex, multi-dimensional signal processing algorithms.

Nevertheless, it is often possible to view the source of

measurement data as a classic receiver structure in which a

threshold level and/or other parameters control the probabilities

of detection (PD) and false alarm (PPA).

In passive sonar applications, for example, time series data

from each sensor is often passed through a beamformer, resulting

in several data streams (beams) corresponding to different angles

of arrival (azimuths), and then a sequence of fast Fourier

transforms (FFTs) is performed on each data stream. The FFT

operation may be viewed as a bank of filters, so that one deals

with many separate narrowband time series, one from each beam-bin

or resolution "cell" in the two-dimensional frequency-azimuth

space.

There are many different detection algorithms for dealing

with these data streams; their structures depend upon the nature

of the application and the expected signals. A simple but common

procedure, if the signals are narrowband and relatively stable,

is to form power spectra (i.e., take the squared magnitude of

each sample) and then integrate (i.e., sum) each data stream over

an appropriate period of time. At the end of each integration

period, a noise spectrum equalization (NSE) procedure compensates

for different background noise levels at different frequencies,

and detections are declared in all beam-bins for which the

integrated output exceeds a threshold.

Except for the NSE, this amounts to passing each data stream

19



through an energy detector [19, 20], which assumes an unknown

signal in white, gaussian noise. Under the noise-only

hypothesis, the test statistic has a chi-square distribution with

2TW degrees of freedom, where T is the integration time and W is

the bin width, With the signal present, it has a non-central

chi-square distribution with the same degrees of freedom and

non-centrality parameter equal to the SNR.

We shall use these distributions to compute receiver

operating characteristics (ROCs). A standard ROC curve is the

locus of points (PFAPD) obtained as the detection threshold

varies over all possible settings, and a family of such curves

for different SNRs is usually plotted.

In this case an energy detector is operating on each

frequency-azimuth cell, and we are interested in the expected

number of false alarms in all cells of interest, which is the

single-cell false alarm probability multiplied by the number of

independent cells in a tracker's validation gate. Most

algorithms require detections to be separated by one or more

empty cells (i.e., adjacent cells above threshold are considered

part of the same detection) , and the effective number of cells

generally depends in a complicated way on the details of the

algorithm. For the sake of this discussion, we shall simply

assume that false alarms can potentially occur in 1/3 of the

cells in any given integration period.

A typical automatic line detection algorithm of the type

described above might have an integration time of 250 sec. and

FFT resolution of 0.1 Hz, or 50 degrees of freedom, and each cell

would be 1 beam by 0.1 Hz. The tracker in this situation might

have an-innovation covariance matrix

[ibeam 0 12

s = L . zI(31)
0 0.3 Hz

20
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and a 4-sigma validation gate with volume

V = c2g 21II/2 = ir(16 )(0.3) z 15 beam-Hz (32)

The total number of resolution cells in the gate is thus
15/0.1 = 150, and the number of independent cells is 150/3 = 50.

It follows that the expected number of false alarms per gate is

CV = 50PFA.

A set of ROC curves for an energy detector, computed using
the above assumptions, is shown in Figure 5. For a given SNR,

one can adjust the detection threshold so as to select an
operating point anywhere along the corresponding ROC curve.
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trackers utilize complex spectra, and their effective integration

times are usually less than those described above. Although the

details of these algorithms vary greatly, their basic operations

tend to be similar to those of a quadrature receiver or

incoherent matched filter [20], which assumes a sinusoidal signal

of unknown phase. Under the signal-plus-noise hypothesis, the

test statistic has a Rician distribution, which reduces to a

Rayleigh distribution in the noise-only case.

A set of ROC curves for a quadrature receiver is shown in

Figure 6. These were computed using the expressions given in

[201 for PFA and PD' and using the same validation gate as

above. Another set, for the case where both amplitude and phase

are unknown (slow Rayleigh fading), is shown in Figure 7.

10 dB

dd

0.

Clutter density CV - 50 rFA

FIG. 6. ROC CURVES FOR QUADRATURE RECEIVER

Another class of algorithms for passive sonar applications
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FIG. 7. ROC CURVES FOR QUADRATURE RECEIVER WITH RAYLEIGH FADING

involves coherent or incoherent correlation of data received at
two geographically distinct sites. The resulting statistic, as a

function of time delay and frequency (Doppler) shift, is known as
an ambiguity surface, and a signal received at both sites from

the same target produces a peak in the surface. Detection of
peaks above some threshold is qualitatively similar to the

situation described above, in which peaks are sought in the

frequency-azimuth plane. With appropriate assumptions,

approximate ROC curves can be obtained for such receivers.

23



5. OPTIMIZATION OF TRACKING PERFORMANCE

Superimposing one of the sets of TOC contours from Figures

2-4 on one of the ROC curves from Figures 5-7, an operating point

(i.e., threshold) can be selected so as to maximize q2 and
"optimize" tracking performance. For example, Figure 8

shows the TOC contours for M=2 superimposed on the ROC curve

corresponding to a quadrature receiver and SNR = 8 dB. The
"optimal" point is indicated by 0.

2 -
%

2-4-

Clutter dslity CV - 50 PFA

FIG. 8. OPTIMAL THRESHOLD SETTING FOR QUADRATURE RECEIVER WITH
SNR = 8 DB

This graphical method for selecting an operating point can,

of course, be replaced by a mathematical optimization; the

obvious necessary condition is that the ROC and TOC curves be

tangent. However, the practical difficulty of computing the

required differentials to solve the necessary conditions is

substantial.
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Another interesting issue is the optimization of tracking

performance when the signal's SNR is not known. In this case,

several ROC curves are involved and one must select a threshold

that is best (in some sense) for a whole range of SNRs.

Alternatively, an adaptive scheme could be devised, whereby the

SNR is monitored and the threshold adjusted so as to maximize q2
'W along the current ROC curve.
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6. APPLICATION TO MODIFIED LIKELIHOOD FUNCTION

Calculation of the modified likelihood function [18]

requires the second moment U2 (m) of the combined innovation (10),

conditioned on Yk-i and m. This may be written as

U2(m)= q2 (m)S (33)

where q2 (m) represents all the scalar factors on the right-hand
side of (23).

Since this is proportional to the single-measurement

innovation covariance matrix S, the standard likelihood function

machinery need only incorporate the scale factor q2 (m) in order,

to compute the modified version. Values of q2 (m) for various m,

g, PD' and C may be precomputed, using the methods described in

Section 3 above.
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7. CONCLUSION

We have explored an important connection between data

association/tracking algorithms and the upstream signal

processing/detection algorithms that provide their measurements.

A quantitative relationship has been derived that specifies the

effect on tracking performance of threshold-dependent parameters

such as the probabilities of detection and false alarm, and a

graphical technique has been described for selecting an optimal

threshold.
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APPENDIX A
PROBABILITY CALCULATIONS

In this appendix we shall derive a number of expressions
needed in the main text. Letting Yj(m) denote the prior

probability of the event Xj, conditioned on m, the total

probability theorem yields

=jm .P{XjjM,yk-l} . p{'XIm}

=P1)-IM'-m-l~1-1p1mFsm-lIm1 +p1X.IM -'=MIIPIM

~' 4(l/M)Pjm F 1mlI1 + (O)PIm MIMI, (34)..

=(O)PImP-=ml + (l)P{1?mPM}M, j=O

because in?, the number of false measurements, must be either M-1

(if the target is detected) or m (if it is not). Using Bayes'

rule and the assumed Poisson distribution for false measurements,

P1mF.m-lIm} = PjmImF=m-l}PjmF=m-l}/P~m1

= [ DPG1 te-CV (CV)inl/(M-1) !]/P1m}

PDPGm/(PDPGm + (l-PDPG)CVI 35

PImPUMlM} = P1mImF.m1p[m?.P~mpm}

= [1-PDPG]Ee-cv (CV)m/ml]/Pfml
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(1-PDPG)CV/[PDPGm + (1-PDPG)CV] (36)

where the denominator P{m} is the prior probability of m and is

equal to the sum of the numerators in the two equations:

P{mJ = pimIyk-}

= [PDPGm + (1-PDPG)CV]e-CV(cv)m-l/m!, m=O,l,... (37)

Substituting back into (34) yields

(in) a PDPG/[PDPGm + (I-PDPG)CV], jl,...m

7j ( l) = -PDPG)CV/[PDPGm + (l-PDPG)CV), j(

Note that yj(m) is independent of j for j>O.

Using Bayes' rule, the posterior probabilities in (10) can

be expressed as

a P{j j Iyk} = p{Xjl2l,"-,m,Yk- l}

= P(Y.,... IXjm,Yk) P{ Xj Imyk-1/p(2l,... 2nm,Ykl)

= p(211'...2mlj'm'yk-l)yj(m)/= numerators (39)

The first factor is the joint probability density of the m
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I

candidate measurements, conditioned on the j-th one being

correct. According to the PDA assumptions, the correct

measurement yj has a gaussian density

N(,j;OS)/PG (I/PG)exp(-,3s -a I j/2)/(2)M/ 2Is 11/ 2  (40)

with mean 0 and covariance S, where the factor I/P G accounts for

its restriction to the validation gate, and each incorrect

measurement has a uniform density V- . It follows that

p(2l,...2mXj,m,Yk-l) = _v-m+lN(2j;0_,S)/PG, (41)
IV- m , j=0

The second factor in (39) is the prior probability of Xj, given
by (38). The denominator is the joint prior density of the

measurements, conditioned only on m (and the past data),

P(I,... 2 Im,yk-) _ (42)

v-m 0 (in) + v-m+l(1/PG) N(j ;0,S) y9 (m)

Note that with the above conditioning, the validated measurements

are not independent, i.e., (42) is not equal to the product over

j of the marginal prior densities

p(Yjlm,Yk- l) = V-l1-Yj(m)] + (1/PG)N(2j;O,S)Y9(m) (43)

finally, substitution of (38), (41), and (42) into (39)
followed by a certain amount of rearrangement yields
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exp _j~3 1 /2) j = m(44)

bo (45)

b + ~'exp(-YIS'2-/

where

b ~ 21TM/2CII1/ 2(1PP)P

-(27r)mi (CV/cmg ) (1-PDPG)/PD (46)
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APPENDIX B
DERIVATION OF U1 AN~D U2 INTEGRALS

In this appendix the expectations

(m) =EL? [im 1-7I YJ (B-1)

and

U (m) =~ m Jmy'Y (B-2)

will be evaluated, where is given by (44) and the joint density

of l,.y is (42). In order to simplify the arguments, we

shall make use of the fact that S is positive definite and change

variables to

=,i = 1,... m (B-3)

so that

S_ -1q12 (B-4)

and

= s pS (B-5)
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In terms of the new variables i the validation gate becomes

2 2MA
a sphere {< : 1 II < g I with volume cMg =V the fys can

be rewritten as

b e 2  i = I..m (B-6)

b + e 1
j=l

where

b -  (27) /  CC g)  (1-PDP G ) / P D  (B-7)

is the same as in (46). Note that the dimensionless quantity CV,

the average number of false measurements in the (now spherical)

gate, is unaffected by the variable change. The joint density

(42) becomes

P(Cl'... m Im ' Yk 1 = Y0 (m)v- +Yj m -~ V :('i0, I)/pC7 (B-8)

i=l ~

if < g for all i, and 0 otherwise.
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Using the change of coordinates from y to c, expressions (19)

through (21) may be reexpressed as follows:

E[Pklm,Ykl = WS1 [bl(m)-U 2 (m)]S-W'2, m=1,2,... (B-9)

S(m) E[ i iIlz k-l' m] = S Ul (m) S- B-0
1 1

m m _ 0
2 = E ii ( E['zk-l,m ] = S U (m) S-  (B-Il)2 i=l j=l j 2

*Let D stand for the spherical validation gate region. Then the

above two expectations may be written out explicitly as multiple

integrals of certain matrices, taken over m copies of D:

U 1 = fT.... f A(I'' . )P(1I'.'" )dl (B-12)

D D D

U2  f f .... fB . I'" m (B-13)

D D D

where p is the joint innovations density (B-8) with the conditioning

suppressed and A,B are MxM matrices described componentwise by

A = p  1 _< p,q _ M (B-14)

Bpj 1 < p,q < M (B-15)pq i, 1i J-3-
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1 2 M

Here the M-dimensional vector k has been denoted as

The integrals (B-12) and (B-13) are actually mM-fold integrals.

Although the complexity of undertaking such a large computation

directly would prove formidable, a number of observations show

that these integrals have a fairly simple and straightforward

structure:

Observation 1. The matrices 01 and 02 are diagonal.

I FFrom the expressions (B-14) and (B-15) one may deduce that

off-diagonal elements will integrate out to zero. For when

p # q, both Apq and Bpq become odd polynomials of second degree

1 Min the variables ,...,Iwith coefficients either single

$Is or pairwise products of f's. Now both the B's and the

two terms of the probability density p in (B-8) are positive

functions depending only on II,-'ll , i.e. they have

the same values at antipodal points of a sphere. The odd

polynomials from Apq and Bpq will have opposite values at

antipodal points, so that their contributions to the total

integral will cancel.

Physically, this amounts to the observation that off -diagonal

elements of the inertia tensor vanish in a principal axis system,

for a spherical body with the shape of the validation region and

with mass distribution density appropriately defined in terms of

the R's and p.
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Observation 2. Integrals of cross terms (i#j) vanish in the

sum (B-15) defining Bpq.

From the previous observation, we need only concern

ourselves with diagonal entries B pp. Again when i#j we have an

odd polynomial in the c's, and the same arguments as before

apply again to show its integral over a sphere, weighted by

• the density p, must vanish.

From the point of view of the original definition (B-11)

of U2 ' we could say that distinct innovations i, are orthogonal:

their inner products vanish and do not contribute to the second

moment of the combined innovations.

Observation 3. Each term of A or B making a nonvanishing

contribution to UN, N=l or 2, has the same value, given explicitly

by

0 r, NI i m -r 2  u\ 2 / m\,- 1

C7 Cy eirl2 -N2

= ... e j+C .2 1llrj dr .drN K0 0 Lb+ I e_ -rj  gj_- (-" U)"

j=l (B-16)

where

C -C(m,M) ¥(m) (B-17)
(27r) M / (cMgM) m-P G
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cu~~~ ~ = u m M  y (m)

07

Cu C (mM) (B-18)
u (c gM) m

K K(m,M) = MM -I m (-19)M

To prove this, let us consider the first term of the (l,1)
~N 1 2pl

entry of each integral, which can be written as "N 1 (  '' m

* N=1,2. Since p and 81 depend only on the norms rii,[ =

it is clearly advantageous to introduce spherical coordinates

in each of the m copies of the c-space:

12 2.dN M-I. M-
d = d? Idl12 dz r. dridai  (B-20)

Here dcO - 1 denotes the "unit solid angle," i.e. the surface
1

element on the unit sphere (r,1)2 + (C?)2 + ... + (M) 2= 1.

Making these substitutions, the integral for the expected
AN. 1.2

value of N1 21i  becomes

e a 1 2r M- M-1 M-1 M-1

"'i mI (Cg 1 e )(r 1 drldco 1  . rm .drmd m  )0 0b+ 7 er 1 j

j--i (B-21)
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The constants C ,Cu , and K defined in (B-17), (B-18) are

introduced to simplify the notation.

The expression in (B-21) is not yet complete because the

variable i still has to be reexpressed in angular wl-coordinates

for the first copy of the M-dimensional state space. However,

the other angular variables w-1 .M-1 do not occur in the

integrand, so that their integrals can be absorbed in the

constant K. The fact needed to do this is that the integral

of the unit solid angle is just the surface area of the unit

sphere, which is M times cM (the volume of the unit sphere).

To handle the 1-dependence

of the integrand in (B-21) we are

going to use an argument almost

identical to the one used to derive

the volume of the unit sphere

(which is to start from a known

integral and "work backwards").

unit S here 3 The known integral that we wish to

exploit is

r1 22 M (27) M/2 (B-22)

j=l
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Now if this integral is rewritten in spherical coordinates, we

should make a substitution 1 = r1f(W -I) where f is a smooth

function independent of r . For example if coordinates are

*chosen on the sphere as depicted in the figure, we would have

f(aM-l) = cos 8, where the angle 8 is measured downward from the1
north pole as shown. Rewriting (B-22) in spherical coordinates

gives

-4. (2 )M/2= rle- r r dr 1 W )dw1 (B-23)

0 sphere
rl=l

21

(B-22) into the well-known integral representation for the

gamma function

r(t) = exl xI dx (B-24)

0

so now we have

Mj/2 = M/2 M 1)(2 M-1 P4-lB 5(270 M/ 2  r 2M2(7 + i)I f2(W-l)dw -  (B-25)
(2w)f j 1  )di1

sphere
rl1=l

!e are now in a position to solve for the nonradial part of the

integral in (B-25). But when this is done, the quantity we

obtain is recognized to be cM , the volume of the unit sphere:
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2 _- - M/2

fM(l - = c (B-26)
f 1 r4 +l1) M

Actually, by using properties of the gamma function, this

expression for cM can be written more explicitly as

( 2M/2 TM/ 2  M/2
if M is even

M(M-2) ... 4-2 (m/2)!

2 - (B-27)C~M M -2 -

2 (M+1)/2 T (M-1)/2 if M is odd

M(M-2) ... 5.3-1

Now returning to the original integral (B-21), we note that

even though the integrand is not the same as (B-22), the angular

dependence is, so that (B-26) may be applied. Absorbing this

N 1 2_
cm into K shows that the B1( _ -contribution to UN is given

exactly by (B-16). It should be noted that this formula is

also immediately valid for M=l without even introducing the

spherical change of coordinates (B-20), since the volume of the

unit interval is 2 (correctly given by B-27).

Although we began the discussion by considering the contri-

bution of a single term N(1)2 to the expectation, the
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homogeneity of the expression (B-21) shows that the other terms

a ) '...,' M(l ) in the (l,1)-entry will each make an

identical contribution. The same argument applies to other

diagonal entries of 01 and U2 homogeneity again shows that

each term will make the same contribution, given by (B-16). This

6justifies the conclusion that

A

SUN = mTNI (B-28)

where I is the identity matrix.

INext, let us transform back from c-coordinates to the

original v-coordinates as given in (B-5). We have proven that

our original expectations UIU 2 are scalar multiples of the

covariance matrix S:

Ur = S (mNI)S = MiNS (B-29)

Finally, substitution of (B-17)-(B-19) and (38) into

(B-16) followed by numerous cancellations yields the expressions

(22)-(25) in Section 3.
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